Zeroing in on a New Treatment for Autism and Epilepsy

April 29, 2022

Article published by Gladstone Institutes

Children with Dravet syndrome, a severe form of epilepsy that begins in infancy, experience seizures, usually for their entire life. They are at high risk of sudden unexpected death in epilepsy (SUDEP) and can also develop intellectual disability and autism. Available treatments typically fail to improve these symptoms.

Now, a group of scientists at Gladstone Institutes led by Lennart Mucke, MD, reports new findings in the journal Science Translational Medicine that could guide the development of better therapeutic strategies for Dravet syndrome and related conditions.

The researchers previously discovered, in a mouse model of Dravet syndrome, that genetically removing the protein tau from the entire body during embryonic development reduces epilepsy, SUDEP, and autism-like behaviors. In the new study, they pinpoint the key cell type in the brain in which tau levels must be reduced to avoid these problems. They also show that lowering tau is still effective in mice when the intervention is delayed until after their birth.

“Our findings provide new insights into the cellular mechanisms by which tau reduction prevents abnormal overexcitation in the brain,” says Mucke, director of the Gladstone Institute of Neurological Disease. “They are also encouraging from a therapeutic perspective, since in humans, initiating treatment after birth is still more feasible than treating embryos in the womb.”