Switching Brain Circuits On and Off Without Surgery

July 9, 2018

In the maze of our brains, there are various pathways by which neural signals travel. These pathways can go awry in patients with neurological and psychiatric diseases and disorders, such as epilepsy, Parkinson’s, and obsessive-compulsive disorder. Researchers have developed new therapeutic strategies to more precisely target neural pathways involved in these conditions, but they often require surgery.

The latest findings from the laboratory of Mikhail Shapiro, assistant professor of chemical engineering at Caltech, are now showing how scientists and doctors might, in the future, selectively turn neural circuits on and off–without the need for surgery. The new study, featured in the July 9 online edition of Nature Biomedical Engineering, demonstrates how the method–which involves a trio of therapies: ultrasound waves, gene therapy, and synthetic drugs–can be used to specifically alter memory formation in mice.

“By using sound waves and known genetic techniques, we can, for the first time, noninvasively control specific brain regions and cell types as well as the timing of when neurons are switched on or off,” says Shapiro, who is also a Schlinger Scholar and a Heritage Medical Research Institute Investigator. The work has implications for basic research in animals and for the future treatment of neurological and psychiatric conditions.

The researchers say they hope to continue testing in animals with models of diseases such as epilepsy. Many patients with epilepsy currently undergo surgery to cut out the regions of their brain where seizures are thought to be triggered. With the ATAC method, specific brain areas could, in theory, be switched off temporarily without surgery.