April 18, 2023

Personalized Seizure Detection Using Logistic Regression Machine Learning Based on Wearable ECG-Monitoring Device

Abstract found on PubMed

Purpose: Wearable automated detection devices of focal epileptic seizures are needed to alert patients and caregivers and to optimize the medical treatment. Heart rate variability (HRV)-based seizure detection devices have presented good detection sensitivity. However, false alarm rates (FAR) are too high.

Methods: In this phase-2 study we pursued to decrease the FAR, by using patient-adaptive logistic regression machine learning (LRML) to improve the performance of a previously published HRV-based seizure detection algorithm. ECG-data were prospectively collected using a dedicated wearable electrocardiogram-device during long-term video-EEG monitoring. Sixty-two patients had 174 seizures during 4,614 h recording. The dataset was divided into training-, cross-validation-, and test-sets (chronological) in order to avoid overfitting. Patients with >50 beats/min change in heart rate during first recorded seizure were selected as responders. We compared 18 LRML-settings to find the optimal algorithm.

Results: The patient-adaptive LRML-classifier in combination with using only responders to train the initial decision boundary was superior to both the generic approach and including non-responders to train the LRML-classifier. Using the optimal setting of the LRML in responders in the test dataset yielded a sensitivity of 78.2% and FAR of 0.62/24 h. The FAR was reduced by 31% compared to the previous method, upholding similar sensitivity.

Conclusion: The novel, patient-adaptive LRML seizure detection algorithm outperformed both the generic approach and the previously published patient-tailored method. The proposed method can be implemented in a wearable online HRV-based seizure detection system alerting patients and caregivers of seizures and improve seizure-count which may help optimizing the patient treatment.