January 8, 2019
Scientists investigated the changes in the temporal lobe cortex of a rat brain during prolonged epileptic seizures. Despite the complex interaction of neural signals, biologists and physicists managed to build their mathematical model and identified the key factor leading to the seizures. This work was supported by the Russian Science Foundation and published in Frontiers in Cellular Neuroscience.
A person subject to epilepsy suffers from occasional convulsive seizures. The condition when the seizures follow each other after a short time is called epistatus and considered to be particularly dangerous. Although scientists know that this happen due to excessive excitation of neurons in the brain, the cause of such excitation remains unclear.
In the new study, the researchers examined the signaling processes in the cortex of the temporal lobe before and after the seizures. This area was chosen on purpose since the epilepsy associated with it is the most common. Scientists conducted their research on a rat brain cut placed in a special pro-epileptic solution that mimics convulsions in the patient’s brain tissue. To study the excitability of neurons, scientists analyzed the currents that occur in the brain cells stimulated by electricity, before and after a 15-minute epistatus.